Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Biomol Struct Dyn ; : 1-14, 2021 Jul 27.
Article in English | MEDLINE | ID: covidwho-2248346

ABSTRACT

The COVID-19 pandemic has already taken many lives but is still continuing its spread and exerting jeopardizing effects. This study is aimed to find the most potent ligands from 703 analogs of remdesivir against RNA-dependent RNA polymerase (RdRp) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus . RdRp is a major part of a multi-subunit transcription complex of the virus, which is essential for viral replication. In clinical trials, it has been found that remdesivir is effective to inhibit viral replication in Ebola and in primary human lung cell cultures; it effectively impedes replication of a broad-spectrum pre-pandemic bat coronaviruses and epidemic human coronaviruses. After virtual screening, 30 most potent ligands and remdesivir were modified with triphosphate. Quantum mechanics-based quantitative structure-activity relationship envisages the binding energy for ligands applying partial least square (PLS) regression. PLS regression remarkably predicts the binding energy of the effective ligands with an accuracy of 80% compared to the value attained from molecular docking. Two ligands (L4:58059550 and L28:126719083), which have more interactions with the target protein than the other ligands including standard remdesivir triphosphate, were selected for further analysis. Molecular dynamics simulation is done to assess the stability and dynamic nature of the drug-protein complex. Binding-free energy results via PRODIGY server and molecular mechanics/Poisson-Boltzmann surface area method depict that the potential and solvation energies play a crucial role. Considering all computational analysis, we recommend the best remdesivir analogs can be utilized for efficacy test through in vitro and in vivo trials against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.

2.
Urban Clim ; 38: 100903, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1294284

ABSTRACT

OBJECTIVE: Weather parameters such as temperature, humidity, air quality index and wind speed are the important factors influencing the infectious diseases like Covid-19. Therefore, this study aims to discuss and analyse the relation between weather parameters and the spread of Coronavirus disease (Covid-19) from the perspective of Bangladesh. METHODS: Correlation among weather parameters and infection and death rate were established using several graphical plots and wind rose diagrams, Kendall and Spearman correlation and appropriate discussion with relevancy and reference. Information presented in this study has been extracted from 1st April 2020 to 30th December 2020. RESULTS: Analyses show that with the decrease in temperature, infection rate increased significantly. Also, the number of infection increases as wind speed increases. As the absolute humidity rate of Bangladesh is almost constant; therefore, the authors are unable to predict any relation of absolute humidity with the number of infection. Further, the prediction for the number of infections based on the wind direction for the several regions of seven divisions in Bangladesh is vulnerable for the upcoming several months. CONCLUSION: This study has analysed the dependency of weather parameters on a number of infections along with predicting the upcoming danger zones.

3.
J Biomol Struct Dyn ; 39(16): 6290-6305, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-684174

ABSTRACT

SARS-CoV-2 virus outbreak poses a major threat to humans worldwide due to its highly contagious nature. In this study, molecular docking, molecular dynamics, and structure-activity relationship are employed to assess the binding affinity and interaction of 76 prescription drugs against RNA dependent RNA polymerase (RdRp) and Main Protease (Mpro) of SARS-CoV-2. The RNA-dependent RNA polymerase is a vital enzyme of coronavirus replication/transcription complex whereas the main protease acts on the proteolysis of replicase polyproteins. Among 76 prescription antiviral drugs, four drugs (Raltegravir, Simeprevir, Cobicistat, and Daclatasvir) that are previously used for human immunodeficiency virus (HIV), hepatitis C virus (HCV), Ebola, and Marburg virus show higher binding energy and strong interaction with active sites of the receptor proteins. To explore the dynamic nature of the interaction, 100 ns molecular dynamics (MD) simulation is performed on the selected protein-drug complexes and apo-protein. Binding free energy of the selected drugs is performed by MM/PBSA. Besides docking and dynamics, partial least square (PLS) regression method is applied for the quantitative structure activity relationship to generate and predict the binding energy for drugs. PLS regression satisfactorily predicts the binding energy of the effective antiviral drugs compared to binding energy achieved from molecular docking with a precision of 85%. This study highly recommends researchers to screen these potential drugs in vitro and in vivo against SARS-CoV-2 for further validation of utility.


Subject(s)
COVID-19 , Prescription Drugs , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases , Prescriptions , RNA-Dependent RNA Polymerase , SARS-CoV-2 , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL